Primary tabs

Alzheimer Disease Models Based on Human Neural Progenitor Cells

Researchers: 
Funding year(s): 
2011
Funding to date: 
$100,000

The goal of this project is to develop genetically modified human neural progenitor cells that can replicate Alzheimer’s disease pathology in in vitro and in vivo conditions in order to develop and test Alzheimer disease drugs in human brain cells.

This work represents a potential major breakthrough in the use of stem cells for Alzheimer’s research. Various therapeutic applications are under development in many laboratories to treat this tragic disease. However, the lack of fast and reliable Alzheimer’s disease model system slows down the validation of laboratorial trials that could lead to the final clinical stage. Current Alzheimer disease mouse models fail to fully replicate the disease pathology, possibly due to lack of human-specific physiological pathways of the brain.

Dr. Doo Yeon Kim and his team plan to develop Alzheimer’s disease models based on human neural progenitor cells. Human neural progenitor cells are multipotent stem cells that can differentiate to brain cells in in vitro and in vivo conditions. Recent reprogramming technology makes it possible to generate human neural progenitor cells easily from skin cells of normal and Alzheimer’s disease patients. In this study, they will develop genetically modified human neural progenitor cells that can replicate Alzheimer’s disease pathology in in vitro and in vivo conditions. Their study will provide a novel Alzheimer’s disease model system that can be used to develop and test Alzheimer’s disease drugs in human brain cells and it will provide a human Alzheimer’s disease model for basic researchers.